#abc265d. [abc265_d]Iroha and Haiku (New ABC Edition)

[abc265_d]Iroha and Haiku (New ABC Edition)

Problem Statement

There is a sequence A=(A0,ldots,AN1)A=(A_0,\\ldots,A_{N-1}) of length NN.
Determine if there exists a tuple of integers (x,y,z,w)(x,y,z,w) that satisfies all of the following conditions:

  • 0leqx<y<z<wleqN0 \\leq x < y < z < w \\leq N
  • Ax+Ax+1+ldots+Ay1=PA_x + A_{x+1} + \\ldots + A_{y-1} = P
  • Ay+Ay+1+ldots+Az1=QA_y + A_{y+1} + \\ldots + A_{z-1} = Q
  • Az+Az+1+ldots+Aw1=RA_z + A_{z+1} + \\ldots + A_{w-1} = R

Constraints

  • 3leqNleq2times1053 \\leq N \\leq 2\\times 10^5
  • 1leqAileq1091 \\leq A_i \\leq 10^9
  • 1leqP,Q,Rleq10151 \\leq P,Q,R \\leq 10^{15}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN PP QQ RR A0A_0 A1A_1 ldots\\ldots AN1A_{N-1}

Output

If there exists a tuple that satisfies the conditions, print Yes; otherwise, print No.


Sample Input 1

10 5 7 5
1 3 2 2 2 3 1 4 3 2

Sample Output 1

Yes

(x,y,z,w)=(1,3,6,8)(x,y,z,w)=(1,3,6,8) satisfies the conditions.


Sample Input 2

9 100 101 100
31 41 59 26 53 58 97 93 23

Sample Output 2

No

Sample Input 3

7 1 1 1
1 1 1 1 1 1 1

Sample Output 3

Yes