#abc265c. [abc265_c]Belt Conveyor

[abc265_c]Belt Conveyor

Problem Statement

We have a grid with HH horizontal rows and WW vertical columns. (i,j)(i, j) denotes the square at the ii-th row from the top and jj-th column from the left.
(i,j)(i,j) has a character Gi,jG_{i,j} written on it. Gi,jG_{i,j} is U, D, L, or R.

You are initially at (1,1)(1,1). You repeat the following operation until you cannot make a move.

Let (i,j)(i,j) be the square you are currently at.
If Gi,jG_{i,j} is U and ineq1i \\neq 1, move to (i1,j)(i-1,j).
If Gi,jG_{i,j} is D and ineqHi \\neq H, move to (i+1,j)(i+1,j).
If Gi,jG_{i,j} is L and jneq1j \\neq 1, move to (i,j1)(i,j-1).
If Gi,jG_{i,j} is R and jneqWj \\neq W, move to (i,j+1)(i,j+1).
Otherwise, you cannot make a move.

Print the square you end up at when you cannot make a move.
If you indefinitely repeat moving, print -1 instead.

Constraints

  • 1leqH,Wleq5001 \\leq H, W \\leq 500
  • Gi,jG_{i,j} is U, D, L, or R.
  • HH and WW are integers.

Input

Input is given from Standard Input in the following format:

HH WW G1,1G1,2dotsG1,WG_{1,1}G_{1,2}\\dots G_{1,W} G2,1G2,2dotsG2,WG_{2,1}G_{2,2}\\dots G_{2,W} vdots\\vdots GH,1GH,2dotsGH,WG_{H,1}G_{H,2}\\dots G_{H,W}

Output

If you end up at (i,j)(i, j), print it in the following format:

ii jj

If you indefinitely repeat moving, print -1.


Sample Input 1

2 3
RDU
LRU

Sample Output 1

1 3

You will move as $(1, 1) \\to (1, 2) \\to (2, 2) \\to (2, 3) \\to (1, 3)$, ending up here, so the answer is (1,3)(1, 3).


Sample Input 2

2 3
RRD
ULL

Sample Output 2

-1

You will indefinitely repeat moving as $(1, 1) \\to (1, 2) \\to (1, 3) \\to (2, 3) \\to (2, 2) \\to (2, 1) \\to (1, 1) \\to (1, 2) \\to \\dots$, so -1 should be printed in this case.


Sample Input 3

9 44
RRDDDDRRRDDDRRRRRRDDDRDDDDRDDRDDDDDDRRDRRRRR
RRRDLRDRDLLLLRDRRLLLDDRDLLLRDDDLLLDRRLLLLLDD
DRDLRLDRDLRDRLDRLRDDLDDLRDRLDRLDDRLRRLRRRDRR
DDLRRDLDDLDDRLDDLDRDDRDDDDRLRRLRDDRRRLDRDRDD
RDLRRDLRDLLLLRRDLRDRRDRRRDLRDDLLLLDDDLLLLRDR
RDLLLLLRDLRDRLDDLDDRDRRDRLDRRRLDDDLDDDRDDLDR
RDLRRDLDDLRDRLRDLDDDLDDRLDRDRDLDRDLDDLRRDLRR
RDLDRRLDRLLLLDRDRLLLRDDLLLLLRDRLLLRRRRLLLDDR
RRRRDRDDRRRDDRDDDRRRDRDRDRDRRRRRRDDDRDDDDRRR

Sample Output 3

9 5