#abc262h. [abc262_h]Max Limited Sequence

[abc262_h]Max Limited Sequence

Problem Statement

Find the number, modulo 998244353998244353, of integer sequences A=(A1,dots,AN)A = (A_1, \\dots, A_N) of length NN that satisfy all of the following conditions:

  • 0leqAileqM0 \\leq A_i \\leq M for all ii such that 1leqileqN1 \\leq i \\leq N.
  • The maximum value of ALj,dots,ARjA_{L_j}, \\dots, A_{R_j} is XjX_j for all jj such that 1leqjleqQ1 \\leq j \\leq Q.

Constraints

  • 1leqNleq2times1051 \\leq N \\leq 2 \\times 10^5
  • 1leqMlt9982443531 \\leq M \\lt 998244353
  • 1leqQleq2times1051 \\leq Q \\leq 2 \\times 10^5
  • $1 \\leq L_i \\leq R_i \\leq N \\, (1 \\leq i \\leq Q)$
  • 1leqXileqM,(1leqileqQ)1 \\leq X_i \\leq M \\, (1 \\leq i \\leq Q)
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM QQ L1L_1 R1R_1 X1X_1 vdots\\vdots LQL_Q RQR_Q XQX_Q

Output

Print the answer.


Sample Input 1

3 3 2
1 2 2
2 3 3

Sample Output 1

5

$A = (0, 2, 3), (1, 2, 3), (2, 0, 3), (2, 1, 3), (2, 2, 3)$ satisfy the conditions.


Sample Input 2

1 1 1
1 1 1

Sample Output 2

1

Sample Input 3

6 40000000 3
1 4 30000000
2 6 20000000
3 5 10000000

Sample Output 3

135282163