#abc260e. [abc260_e]At Least One

[abc260_e]At Least One

Problem Statement

You are given an integer MM and NN pairs of integers (A1,B1),(A2,B2),dots,(AN,BN)(A_1, B_1), (A_2, B_2), \\dots, (A_N, B_N).
For all ii, it holds that 1leqAiltBileqM1 \\leq A_i \\lt B_i \\leq M.

A sequence SS is said to be a good sequence if the following conditions are satisfied:

  • SS is a contiguous subsequence of the sequence (1,2,3,...,M)(1,2,3,..., M).
  • For all ii, SS contains at least one of AiA_i and BiB_i.

Let f(k)f(k) be the number of possible good sequences of length kk.
Enumerate f(1),f(2),dots,f(M)f(1), f(2), \\dots, f(M).

Constraints

  • 1leqNleq2times1051 \\leq N \\leq 2 \\times 10^5
  • 2leqMleq2times1052 \\leq M \\leq 2 \\times 10^5
  • 1leqAiltBileqM1 \\leq A_i \\lt B_i \\leq M
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM A1A_1 B1B_1 A2A_2 B2B_2 vdots\\vdots ANA_N BNB_N

Output

Print the answers in the following format:

f(1)f(1) f(2)f(2) dots\\dots f(M)f(M)


Sample Input 1

3 5
1 3
1 4
2 5

Sample Output 1

0 1 3 2 1

Here is the list of all possible good sequences.

  • (1,2)(1,2)
  • (1,2,3)(1,2,3)
  • (2,3,4)(2,3,4)
  • (3,4,5)(3,4,5)
  • (1,2,3,4)(1,2,3,4)
  • (2,3,4,5)(2,3,4,5)
  • (1,2,3,4,5)(1,2,3,4,5)

Sample Input 2

1 2
1 2

Sample Output 2

2 1

Sample Input 3

5 9
1 5
1 7
5 6
5 8
2 6

Sample Output 3

0 0 1 2 4 4 3 2 1