#abc248h. [abc248_h]Beautiful Subsequences

[abc248_h]Beautiful Subsequences

Problem Statement

You are given a permutation P=(P1,ldots,PN)P=(P_1,\\ldots,P_N) of (1,ldots,N)(1,\\ldots,N), and an integer KK.

Find the number of pairs of integers (L,R)(L, R) that satisfy all of the following conditions:

  • 1leqLleqRleqN1 \\leq L \\leq R \\leq N

  • $\\mathrm{max}(P_L,\\ldots,P_R) - \\mathrm{min}(P_L,\\ldots,P_R) \\leq R - L + K$

Constraints

  • 1leqNleq1.4times1051 \\leq N \\leq 1.4\\times 10^5
  • PP is a permutation of (1,ldots,N)(1,\\ldots,N).
  • 0leqKleq30 \\leq K \\leq 3
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN KK P1P_1 P2P_2 ldots\\ldots PNP_N

Output

Print the answer.


Sample Input 1

4 1
1 4 2 3

Sample Output 1

9

The following nine pairs (L,R)(L, R) satisfy the conditions.

  • (1,1)(1,1)
  • (1,3)(1,3)
  • (1,4)(1,4)
  • (2,2)(2,2)
  • (2,3)(2,3)
  • (2,4)(2,4)
  • (3,3)(3,3)
  • (3,4)(3,4)
  • (4,4)(4,4)

For (L,R)=(1,2)(L,R) = (1,2), we have $\\mathrm{max}(A_1,A_2) -\\mathrm{min}(A_1,A_2) = 4-1 = 3$ and RL+K=21+1=2R-L+K=2-1+1 = 2, not satisfying the condition.


Sample Input 2

2 0
2 1

Sample Output 2

3

Sample Input 3

10 3
3 7 10 1 9 5 4 8 6 2

Sample Output 3

37