#abc245d. [abc245_d]Polynomial division

[abc245_d]Polynomial division

Problem Statement

We have a polynomial of degree NN, A(x)=ANxN+AN1xN1+cdots+A1x+A0A(x)=A_Nx^N+A_{N-1}x^{N-1}+\\cdots +A_1x+A_0,
and another of degree MM, B(x)=BMxM+BM1xM1+cdots+B1x+B0B(x)=B_Mx^M+B_{M-1}x^{M-1}+\\cdots +B_1x+B_0.
Here, each coefficient of A(x)A(x) and B(x)B(x) is an integer whose absolute value is at most 100100, and the leading coefficients are not 00.

Also, let the product of them be $C(x)=A(x)B(x)=C_{N+M}x^{N+M}+C_{N+M-1}x^{N+M-1}+\\cdots +C_1x+C_0$.

Given A0,A1,ldots,ANA_0,A_1,\\ldots, A_N and C0,C1,ldots,CN+MC_0,C_1,\\ldots, C_{N+M}, find B0,B1,ldots,BMB_0,B_1,\\ldots, B_M.
Here, the given inputs guarantee that there is a unique sequence B0,B1,ldots,BMB_0, B_1, \\ldots, B_M that satisfies the given conditions.

Constraints

  • 1leqN<1001 \\leq N < 100
  • 1leqM<1001 \\leq M < 100
  • Aileq100|A_i| \\leq 100
  • Cileq106|C_i| \\leq 10^6
  • ANneq0A_N \\neq 0
  • CN+Mneq0C_{N+M} \\neq 0
  • There is a unique sequence B0,B1,ldots,BMB_0, B_1, \\ldots, B_M that satisfies the conditions given in the statement.

Input

Input is given from Standard Input in the following format:

NN MM A0A_0 A1A_1 ldots\\ldots AN1A_{N-1} ANA_N C0C_0 C1C_1 ldots\\ldots CN+M1C_{N+M-1} CN+MC_{N+M}

Output

Print the M+1M+1 integers B0,B1,ldots,BMB_0,B_1,\\ldots, B_M in one line, with spaces in between.


Sample Input 1

1 2
2 1
12 14 8 2

Sample Output 1

6 4 2

For A(x)=x+2A(x)=x+2 and B(x)=2x2+4x+6B(x)=2x^2+4x+6, we have C(x)=A(x)B(x)=(x+2)(2x2+4x+6)=2x3+8x2+14x+12C(x)=A(x)B(x)=(x+2)(2x^2+4x+6)=2x^3+8x^2+14x+12, so B(x)=2x2+4x+6B(x)=2x^2+4x+6 satisfies the given conditions. Thus, B0=6B_0=6, B1=4B_1=4, B2=2B_2=2 should be printed in this order, with spaces in between.


Sample Input 2

1 1
100 1
10000 0 -1

Sample Output 2

100 -1

We have A(x)=x+100A(x)=x+100, C(x)=x2+10000C(x)=-x^2+10000, for which B(x)=x+100B(x)=-x+100 satisfies the given conditions. Thus, 100100, \-1\-1 should be printed in this order, with spaces in between.