#abc233d. [abc233_d]Count Interval

[abc233_d]Count Interval

Problem Statement

Given is a sequence of length NN: A=(A1,A2,ldots,AN)A=(A_1,A_2,\\ldots,A_N), and an integer KK.

How many of the contiguous subsequences of AA have the sum of KK?
In other words, how many pairs of integers (l,r)(l,r) satisfy all of the conditions below?

  • 1leqlleqrleqN1\\leq l\\leq r\\leq N
  • displaystylesumi=lrAi=K\\displaystyle\\sum_{i=l}^{r}A_i = K

Constraints

  • 1leqNleq2times1051\\leq N \\leq 2\\times 10^5
  • Aileq109|A_i| \\leq 10^9
  • Kleq1015|K| \\leq 10^{15}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN KK A1A_1 A2A_2 ldots\\ldots ANA_N

Output

Print the answer.


Sample Input 1

6 5
8 -3 5 7 0 -4

Sample Output 1

3

(l,r)=(1,2),(3,3),(2,6)(l,r)=(1,2),(3,3),(2,6) are the three pairs that satisfy the conditions.


Sample Input 2

2 -1000000000000000
1000000000 -1000000000

Sample Output 2

0

There may be no pair that satisfies the conditions.