#abc230g. [abc230_g]GCD Permutation

[abc230_g]GCD Permutation

Problem Statement

Given is a permutation P=(P1,P2,ldots,PN)P=(P_1,P_2,\\ldots,P_N) of the integers from 11 through NN.

Find the number of pairs of integers (i,j)(i,j) such that 1leqileqjleqN1\\leq i\\leq j\\leq N satisfying GCD(i,j)neq1GCD(i,j)\\neq 1 and GCD(Pi,Pj)neq1GCD(P_i,P_j)\\neq 1.
Here, for positive integers xx and yy, GCD(x,y)GCD(x,y) denotes the greatest common divisor of xx and yy.

Constraints

  • 1leqNleq2times1051 \\leq N \\leq 2\\times 10^5
  • (P1,P2,ldots,PN)(P_1,P_2,\\ldots,P_N) is a permutation of (1,2,ldots,N)(1,2,\\ldots,N).
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN P1P_1 P2P_2 ldots\\ldots PNP_N

Output

Print the answer.


Sample Input 1

6
5 1 3 2 4 6

Sample Output 1

6

Six pairs (3,3)(3,3), (3,6)(3,6), (4,4)(4,4), (4,6)(4,6), (5,5)(5,5), (6,6)(6,6) satisfy the condition, so 66 should be printed.


Sample Input 2

12
1 2 3 4 5 6 7 8 9 10 11 12

Sample Output 2

32