#abc205c. [abc205_c]POW

[abc205_c]POW

Problem Statement

For a base number XX, the product of multiplying it YY times is called XX to the YY-th power and represented as textpow(X,Y)\\text{pow}(X, Y). For example, we have textpow(2,3)=2times2times2=8\\text{pow}(2,3)=2\\times 2\\times 2=8.

Given three integers AA, BB, and CC, compare textpow(A,C)\\text{pow}(A,C) and textpow(B,C)\\text{pow}(B,C) to determine which is greater.

Constraints

  • \-109leqA,Bleq109\-10^9 \\leq A,B \\leq 10^9
  • 1leqCleq1091 \\leq C \\leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

AA BB CC

Output

If textpow(A,C)<textpow(B,C)\\text{pow}(A,C)< \\text{pow}(B,C), print <; if textpow(A,C)>textpow(B,C)\\text{pow}(A,C)>\\text{pow}(B,C), print >; if textpow(A,C)=textpow(B,C)\\text{pow}(A,C)=\\text{pow}(B,C), print =.


Sample Input 1

3 2 4

Sample Output 1

>

We have textpow(3,4)=81\\text{pow}(3,4)=81 and textpow(2,4)=16\\text{pow}(2,4)=16.


Sample Input 2

-7 7 2

Sample Output 2

=

We have textpow(7,2)=49\\text{pow}(-7,2)=49 and textpow(7,2)=49\\text{pow}(7,2)=49.


Sample Input 3

-8 6 3

Sample Output 3

<

We have textpow(8,3)=512\\text{pow}(-8,3)=-512 and textpow(6,3)=216\\text{pow}(6,3)=216.