#abc188b. [abc188_b]Orthogonality

[abc188_b]Orthogonality

Problem Statement

Given are two NN-dimensional vectors A=(A1,A2,A3,dots,AN)A = (A_1, A_2, A_3, \\dots, A_N) and B=(B1,B2,B3,dots,BN)B = (B_1, B_2, B_3, \\dots, B_N).
Determine whether the inner product of AA and BB is 00.
In other words, determine whether A1B1+A2B2+A3B3+dots+ANBN=0A_1B_1 + A_2B_2 + A_3B_3 + \\dots + A_NB_N = 0.

Constraints

  • 1leNle1000001 \\le N \\le 100000
  • \-100leAile100\-100 \\le A_i \\le 100
  • \-100leBile100\-100 \\le B_i \\le 100
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN A1A_1 A2A_2 A3A_3 dots\\dots ANA_N B1B_1 B2B_2 B3B_3 dots\\dots BNB_N

Output

If the inner product of AA and BB is 00, print Yes; otherwise, print No.


Sample Input 1

2
-3 6
4 2

Sample Output 1

Yes

The inner product of AA and BB is (3)times4+6times2=0(-3) \\times 4 + 6 \\times 2 = 0.


Sample Input 2

2
4 5
-1 -3

Sample Output 2

No

The inner product of AA and BB is 4times(1)+5times(3)=194 \\times (-1) + 5 \\times (-3) = -19.


Sample Input 3

3
1 3 5
3 -6 3

Sample Output 3

Yes

The inner product of AA and BB is 1times3+3times(6)+5times3=01 \\times 3 + 3 \\times (-6) + 5 \\times 3 = 0.