#abc178e. [abc178_e]Dist Max

[abc178_e]Dist Max

题目描述

平面上有 NN 个点,第 ii 个点的坐标是 (xi,yi)(x_i, y_i)。可能有多个点具有相同的坐标。求两个不同点之间的曼哈顿距离的最大可能值。

这里,两个点 (xi,yi)(x_i, y_i)(xj,yj)(x_j, y_j) 之间的 曼哈顿距离 定义为 xixj+yiyj|x_i-x_j| + |y_i-y_j|

约束条件

  • 2N2×1052 \leq N \leq 2 \times 10^5
  • 1xi,yi1091 \leq x_i, y_i \leq 10^9
  • 输入中的所有值都是整数。

输入

输入以以下格式从标准输入中给出:

NN x1x_1 y1y_1 x2x_2 y2y_2 :: xNx_N yNy_N

输出

输出答案。

示例输入 1

3
1 1
2 4
3 2

示例输出 1

4

第一个点和第二个点之间的曼哈顿距离是 12+14=4|1-2|+|1-4|=4,这是最大可能的值。

示例输入 2

2
1 1
1 1

示例输出 2

0