#abc169e. [abc169_e]Count Median

[abc169_e]Count Median

Problem Statement

There are NN integers X1,X2,cdots,XNX_1, X_2, \\cdots, X_N, and we know that AileqXileqBiA_i \\leq X_i \\leq B_i. Find the number of different values that the median of X1,X2,cdots,XNX_1, X_2, \\cdots, X_N can take.

Notes

The median of X1,X2,cdots,XNX_1, X_2, \\cdots, X_N is defined as follows. Let x1,x2,cdots,xNx_1, x_2, \\cdots, x_N be the result of sorting X1,X2,cdots,XNX_1, X_2, \\cdots, X_N in ascending order.

  • If NN is odd, the median is x(N+1)/2x_{(N+1)/2};
  • if NN is even, the median is (xN/2+xN/2+1)/2(x_{N/2} + x_{N/2+1}) / 2.

Constraints

  • 2leqNleq2times1052 \\leq N \\leq 2 \\times 10^5
  • 1leqAileqBileq1091 \\leq A_i \\leq B_i \\leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN A1A_1 B1B_1 A2A_2 B2B_2 :: ANA_N BNB_N

Output

Print the answer.


Sample Input 1

2
1 2
2 3

Sample Output 1

3
  • If X1=1X_1 = 1 and X2=2X_2 = 2, the median is frac32\\frac{3}{2};

  • if X1=1X_1 = 1 and X2=3X_2 = 3, the median is 22;

  • if X1=2X_1 = 2 and X2=2X_2 = 2, the median is 22;

  • if X1=2X_1 = 2 and X2=3X_2 = 3, the median is frac52\\frac{5}{2}.

Thus, the median can take three values: frac32\\frac{3}{2}, 22, and frac52\\frac{5}{2}.


Sample Input 2

3
100 100
10 10000
1 1000000000

Sample Output 2

9991