#abc159f. [abc159_f]Knapsack for All Segments

[abc159_f]Knapsack for All Segments

Problem Statement

Given are a sequence of NN integers A1A_1, A2A_2, ldots\\ldots, ANA_N and a positive integer SS.
For a pair of integers (L,R)(L, R) such that 1leqLleqRleqN1\\leq L \\leq R \\leq N, let us define f(L,R)f(L, R) as follows:

  • f(L,R)f(L, R) is the number of sequences of integers (x1,x2,ldots,xk)(x_1, x_2, \\ldots , x_k) such that Lleqx1<x2<cdots<xkleqRL \\leq x_1 < x_2 < \\cdots < x_k \\leq R and Ax1+Ax2+cdots+Axk=SA_{x_1}+A_{x_2}+\\cdots +A_{x_k} = S.

Find the sum of f(L,R)f(L, R) over all pairs of integers (L,R)(L, R) such that 1leqLleqRleqN1\\leq L \\leq R\\leq N. Since this sum can be enormous, print it modulo 998244353998244353.

Constraints

  • All values in input are integers.
  • 1leqNleq30001 \\leq N \\leq 3000
  • 1leqSleq30001 \\leq S \\leq 3000
  • 1leqAileq30001 \\leq A_i \\leq 3000

Input

Input is given from Standard Input in the following format:

NN SS A1A_1 A2A_2 ...... ANA_N

Output

Print the sum of f(L,R)f(L, R), modulo 998244353998244353.


Sample Input 1

3 4
2 2 4

Sample Output 1

5

The value of f(L,R)f(L, R) for each pair is as follows, for a total of 55.

  • f(1,1)=0f(1,1) = 0
  • f(1,2)=1f(1,2) = 1 (for the sequence (1,2)(1, 2))
  • f(1,3)=2f(1,3) = 2 (for (1,2)(1, 2) and (3)(3))
  • f(2,2)=0f(2,2) = 0
  • f(2,3)=1f(2,3) = 1 (for (3)(3))
  • f(3,3)=1f(3,3) = 1 (for (3)(3))

Sample Input 2

5 8
9 9 9 9 9

Sample Output 2

0

Sample Input 3

10 10
3 1 4 1 5 9 2 6 5 3

Sample Output 3

152