#abc152c. [abc152_c]Low Elements

[abc152_c]Low Elements

Problem Statement

Given is a permutation P1,ldots,PNP_1, \\ldots, P_N of 1,ldots,N1, \\ldots, N. Find the number of integers ii (1leqileqN)(1 \\leq i \\leq N) that satisfy the following condition:

  • For any integer jj (1leqjleqi)(1 \\leq j \\leq i), PileqPjP_i \\leq P_j.

Constraints

  • 1leqNleq2times1051 \\leq N \\leq 2 \\times 10^5
  • P1,ldots,PNP_1, \\ldots, P_N is a permutation of 1,ldots,N1, \\ldots, N.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN P1P_1 ...... PNP_N

Output

Print the number of integers ii that satisfy the condition.


Sample Input 1

5
4 2 5 1 3

Sample Output 1

3

i=1i=1, 22, and 44 satisfy the condition, but i=3i=3 does not - for example, Pi>PjP_i > P_j holds for j=1j = 1.
Similarly, i=5i=5 does not satisfy the condition, either. Thus, there are three integers that satisfy the condition.


Sample Input 2

4
4 3 2 1

Sample Output 2

4

All integers ii (1leqileqN)(1 \\leq i \\leq N) satisfy the condition.


Sample Input 3

6
1 2 3 4 5 6

Sample Output 3

1

Only i=1i=1 satisfies the condition.


Sample Input 4

8
5 7 4 2 6 8 1 3

Sample Output 4

4

Sample Input 5

1
1

Sample Output 5

1