#abc129b. [abc129_b]Balance

[abc129_b]Balance

問題文

11 から NN の番号がついた NN 個の重りがあり、番号 ii の重りの重さは WiW_i です。

ある整数 1leqT<N1 \\leq T < N に対してこれらの重りを、番号が TT 以下の重り と 番号が TT より大きい重りの 22 グループに分けることを考え、それぞれのグループの重さの和を S1,S2S_1, S_2 とします。

このような分け方全てを考えた時、S1S_1S2S_2 の差の絶対値の最小値を求めてください。

制約

  • 2leqNleq1002 \\leq N \\leq 100
  • 1leqWileq1001 \\leq W_i \\leq 100
  • 入力は全て整数である

入力

入力は以下の形式で標準入力から与えられる。

NN W1W_1 W2W_2 ...... WN1W_{N-1} WNW_N

出力

S1S_1S2S_2 の差の絶対値の最小値を出力せよ。


入力例 1

3
1 2 3

出力例 1

0

T=2T = 2 としたとき、S1=1+2=3,S2=3S_1 = 1 + 2 = 3, S_2 = 3 となり、差の絶対値は 00 となります。


入力例 2

4
1 3 1 1

出力例 2

2

T=2T = 2 としたとき、S1=1+3=4,S2=1+1=2S_1 = 1 + 3 = 4, S_2 = 1 + 1 = 2 となり、差の絶対値は 22 です。これより差の絶対値を小さくすることは出来ません。


入力例 3

8
27 23 76 2 3 5 62 52

出力例 3

2