#abc103c. [abc103_c]Modulo Summation

[abc103_c]Modulo Summation

Problem Statement

You are given NN positive integers a1,a2,...,aNa_1, a_2, ..., a_N.

For a non-negative integer mm, let $f(m) = (m\\ mod\\ a_1) + (m\\ mod\\ a_2) + ... + (m\\ mod\\ a_N)$.

Here, XmodYX\\ mod\\ Y denotes the remainder of the division of XX by YY.

Find the maximum value of ff.

Constraints

  • All values in input are integers.
  • 2leqNleq30002 \\leq N \\leq 3000
  • 2leqaileq1052 \\leq a_i \\leq 10^5

Input

Input is given from Standard Input in the following format:

NN a1a_1 a2a_2 ...... aNa_N

Output

Print the maximum value of ff.


Sample Input 1

3
3 4 6

Sample Output 1

10

$f(11) = (11\\ mod\\ 3) + (11\\ mod\\ 4) + (11\\ mod\\ 6) = 10$ is the maximum value of ff.


Sample Input 2

5
7 46 11 20 11

Sample Output 2

90

Sample Input 3

7
994 518 941 851 647 2 581

Sample Output 3

4527