#arc159e. [arc159_e]Difference Sum Query

[arc159_e]Difference Sum Query

Problem Statement

You are given a positive integer NN, and MM pairs of positive integers: (a0,b0),ldots,(aM1,bM1)(a_0,b_0),\\ldots,(a_{M-1},b_{M-1}) (note that aia_i and bib_i start with index 00).

We have the following sequence of non-negative integers X=(x1,ldots,xN)X=(x_1,\\ldots,x_N).

  • xix_i is determined as follows.
    1. Let l=1l=1, r=Nr=N, and t=0t=0.
    2. Let $m=\\left \\lfloor \\dfrac{a_{t \\bmod M} \\times l + b_{t \\bmod M} \\times r}{a_{t \\bmod M} +b_{t \\bmod M}} \\right \\rfloor$ (lfloorxrfloor\\lfloor x \\rfloor is the greatest integer not exceeding xx). If m=im=i, let xi=tx_i=t and terminate.
    3. If lleqiltml \\leq i \\lt m, let r=m1r=m-1; otherwise, let l=m+1l=m+1. Increment tt by 11 and return to step 2.

Find sumj=cidi1xjxj+1\\sum_{j=c_i}^{d_i-1} |x_j - x_{j+1}| for i=1,2,ldots,Qi=1,2,\\ldots,Q.
It can be proved that the answers are at most 101810^{18} under the constraints of this problem.

Constraints

  • 2leqNleq10152 \\leq N \\leq 10^{15}
  • 1leqMleq1001 \\leq M \\leq 100
  • 1leqai,bileq10001 \\leq a_i,b_i \\leq 1000
  • $\\max \\left (\\dfrac{a_i}{b_i},\\dfrac{b_i}{a_i}\\right ) \\leq 2$
  • 1leqQleq1041 \\leq Q \\leq 10^4
  • 1leqciltdileqN1 \\leq c_i \\lt d_i \\leq N
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN MM a0a_0 b0b_0 vdots\\vdots aM1a_{M-1} bM1b_{M-1} QQ c1c_1 d1d_1 vdots\\vdots cQc_Q dQd_Q

Output

Print QQ lines. The xx-th line should contain the answer to the question for i=xi=x.


Sample Input 1

5 1
1 1
3
1 2
2 4
3 5

Sample Output 1

1
3
2

We have X=(1,2,0,1,2)X=(1,2,0,1,2). For example, x1x_1 is determined as follows.

  • Let l=1l=1, r=5(=N)r=5(=N), and t=0t=0.
  • Let $m=3(=\\left \\lfloor \\dfrac{1 \\times 1 + 1 \\times 5}{1+1} \\right \\rfloor)$.
  • Since lleq1ltml \\leq 1 \\lt m, let r=2(=m1)r=2(=m-1). Increment tt by 11 to 11.
  • Let $m=1(= \\left \\lfloor \\dfrac{1 \\times 1 + 1 \\times 2}{1+1} \\right \\rfloor )$. Since m=1m=1, let x1=1(=t)x_1=1(=t) and terminate.

The answer to the question for (c1,d1)(c_1,d_1), for example, is $\\sum_{j=c_i}^{d_i-1} |x_j - x_{j+1}| = |x_1-x_2| = 1$.


Sample Input 2

1000000000000000 2
15 9
9 15
3
100 10000
5000 385723875
150 17095708

Sample Output 2

19792
771437738
34191100