#arc145c. [arc145_c]Split and Maximize

[arc145_c]Split and Maximize

Problem Statement

The score of a permutation P=(P1,P2,ldots,P2N)P=(P_1,P_2,\\ldots,P_{2N}) of (1,2,ldots,2N)(1,2,\\ldots,2N) is defined as follows:

Consider dividing PP into two (not necessarily contiguous) subsequences A=(A1,A2,ldots,AN)A = (A_1,A_2,\\ldots,A_N) and B=(B1,B2,ldots,BN)B = (B_1,B_2,\\ldots,B_N). The score of PP is the maximum possible value of displaystylesumi=1NAiBi\\displaystyle\\sum_{i=1}^{N}A_i B_i in such a division.

Let MM be the maximum among the scores of all permutations of (1,2,ldots,2N)(1,2,\\ldots,2N). Find the number, modulo 998244353998244353, of permutations of (1,2,ldots,2N)(1,2,\\ldots,2N) with the score of MM.

Constraints

  • 1leqNleq2times1051 \\leq N \\leq 2\\times 10^5
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

Output

Print the answer.


Sample Input 1

2

Sample Output 1

16

The maximum among the scores of the 2424 possible permutations, MM, is 1414, and there are 1616 permutations with the score of 1414.

For instance, the permutation (1,2,3,4)(1,2,3,4) achieves sumi=1NAiBi=14\\sum _{i=1}^{N}A_i B_i = 14 in the division A=(1,3),B=(2,4)A=(1,3), B=(2,4).


Sample Input 2

10000

Sample Output 2

391163238

Print the count modulo 998244353998244353.