#agc032e. [agc032_e]Modulo Pairing

[agc032_e]Modulo Pairing

Problem Statement

Let MM be a positive integer.

You are given 2N2 N integers a1,a2,ldots,a2Na_1, a_2, \\ldots, a_{2 N}, where 0leqai<M0 \\leq a_i < M for each ii.

Consider dividing the 2N2 N integers into NN pairs. Here, each integer must belong to exactly one pair.

We define the ugliness of a pair (x,y)(x, y) as (x+y)modM(x + y) \\mod M. Let ZZ be the largest ugliness of the NN pairs. Find the minimum possible value of ZZ.

Constraints

  • All values in input are integers.
  • 1leqNleq1051 \\leq N \\leq 10^5
  • 1leqMleq1091 \\leq M \\leq 10^9
  • 0leqai<M0 \\leq a_i < M

Input

Input is given from Standard Input in the following format:

NN MM a1a_1 a2a_2 cdots\\cdots a2Na_{2N}

Output

Print the minimum possible value of ZZ, where ZZ is the largest ugliness of the NN pairs.


Sample Input 1

3 10
0 2 3 4 5 9

Sample Output 1

5

One solution is to form pairs (0,5),(2,3)(0, 5), (2, 3) and (4,9)(4, 9), with ugliness 5,55, 5 and 33, respectively.


Sample Input 2

2 10
1 9 1 9

Sample Output 2

0

Pairs (1,9)(1, 9) and (1,9)(1, 9) should be formed, with ugliness both 00.