#abc275b. [abc275_b]ABC-DEF

[abc275_b]ABC-DEF

Problem Statement

There are non-negative integers AA, BB, CC, DD, EE, and FF, which satisfy AtimesBtimesCgeqDtimesEtimesFA\\times B\\times C\\geq D\\times E\\times F.
Find the remainder when (AtimesBtimesC)(DtimesEtimesF)(A\\times B\\times C)-(D\\times E\\times F) is divided by 998244353998244353.

Constraints

  • 0leqA,B,C,D,E,Fleq10180\\leq A,B,C,D,E,F\\leq 10^{18}
  • AtimesBtimesCgeqDtimesEtimesFA\\times B\\times C\\geq D\\times E\\times F
  • AA, BB, CC, DD, EE, and FF are integers.

Input

The input is given from Standard Input in the following format:

AA BB CC DD EE FF

Output

Print the remainder when (AtimesBtimesC)(DtimesEtimesF)(A\\times B\\times C)-(D\\times E\\times F) is divided by 998244353998244353, as an integer.


Sample Input 1

2 3 5 1 2 4

Sample Output 1

22

Since AtimesBtimesC=2times3times5=30A\\times B\\times C=2\\times 3\\times 5=30 and DtimesEtimesF=1times2times4=8D\\times E\\times F=1\\times 2\\times 4=8,
we have (AtimesBtimesC)(DtimesEtimesF)=22(A\\times B\\times C)-(D\\times E\\times F)=22. Divide this by 998244353998244353 and print the remainder, which is 2222.


Sample Input 2

1 1 1000000000 0 0 0

Sample Output 2

1755647

Since AtimesBtimesC=1000000000A\\times B\\times C=1000000000 and DtimesEtimesF=0D\\times E\\times F=0,
we have $(A\\times B\\times C)-(D\\times E\\times F)=1000000000$. Divide this by 998244353998244353 and print the remainder, which is 17556471755647.


Sample Input 3

1000000000000000000 1000000000000000000 1000000000000000000 1000000000000000000 1000000000000000000 1000000000000000000

Sample Output 3

0

We have (AtimesBtimesC)(DtimesEtimesF)=0(A\\times B\\times C)-(D\\times E\\times F)=0. Divide this by 998244353998244353 and print the remainder, which is 00.