#abc248g. [abc248_g]GCD cost on the tree

[abc248_g]GCD cost on the tree

Problem Statement

You are given an undirected tree with NN vertices.
Let us call the vertices Vertex 11, Vertex 22, ldots\\ldots, Vertex NN. For each 1leqileqN11\\leq i\\leq N-1, the ii-th edge connects Vertex UiU_i and Vertex ViV_i.
Additionally, each vertex is assigned a positive integer: Vertex ii is assigned AiA_i.

The cost between two distinct vertices ss and tt, C(s,t)C(s,t), is defined as follows.

Let p1(=s)p_1(=s), p2p_2, ldots\\ldots, pk(=t)p_k(=t) be the vertices of the simple path connecting Vertex ss and Vertex tt, where kk is the number of vertices in the path (including the endpoints).
Then, let $C(s,t)=k\\times \\gcd (A_{p_1},A_{p_2},\\ldots,A_{p_k})$,
where gcd(X1,X2,ldots,Xk)\\gcd (X_1,X_2,\\ldots, X_k) denotes the greatest common divisor of X1,X2,ldots,XkX_1,X_2,\\ldots, X_k.

Find $\\displaystyle\\sum_{i=1}^{N-1}\\sum_{j=i+1}^N C(i,j)$, modulo 998244353998244353.

Constraints

  • 2leqNleq1052 \\leq N \\leq 10^5
  • 1leqAileq1051 \\leq A_i\\leq 10^5
  • 1leqUi<VileqN1\\leq U_i<V_i\\leq N
  • All values in input are integers.
  • The given graph is a tree.

Input

Input is given from Standard Input in the following format:

NN A1A_1 A2A_2 cdots\\cdots ANA_N U1U_1 V1V_1 U2U_2 V2V_2 vdots\\vdots UN1U_{N-1} VN1V_{N-1}

Output

Print $\\displaystyle\\sum_{i=1}^{N-1}\\sum_{j=i+1}^N C(i,j)$, modulo 998244353998244353.


Sample Input 1

4
24 30 28 7
1 2
1 3
3 4

Sample Output 1

47

There are edges directly connecting Vertex 11 and 22, Vertex 11 and 33, and Vertex 33 and 44. Thus, the costs are computed as follows.

  • C(1,2)=2timesgcd(24,30)=12C(1,2)=2\\times \\gcd(24,30)=12
  • C(1,3)=2timesgcd(24,28)=8C(1,3)=2\\times \\gcd(24,28)=8
  • C(1,4)=3timesgcd(24,28,7)=3C(1,4)=3\\times \\gcd(24,28,7)=3
  • C(2,3)=3timesgcd(30,24,28)=6C(2,3)=3\\times \\gcd(30,24,28)=6
  • C(2,4)=4timesgcd(30,24,28,7)=4C(2,4)=4\\times \\gcd(30,24,28,7)=4
  • C(3,4)=2timesgcd(28,7)=14C(3,4)=2\\times \\gcd(28,7)=14

Thus, the sought value is $\\displaystyle\\sum_{i=1}^{3}\\sum_{j=i+1}^4 C(i,j)=(12+8+3)+(6+4)+14=47$ modulo 998244353998244353, which is 4747.


Sample Input 2

10
180 168 120 144 192 200 198 160 156 150
1 2
2 3
2 4
2 5
5 6
4 7
7 8
7 9
9 10

Sample Output 2

1184