#abc243g. [abc243_g]Sqrt

[abc243_g]Sqrt

Problem Statement

We have a sequence of length 11: A=(X)A=(X). Let us perform the following operation on this sequence 1010010^{100} times.

Operation: Let YY be the element at the end of AA. Choose an integer between 11 and sqrtY\\sqrt{Y} (inclusive), and append it to the end of AA.

How many sequences are there that can result from 1010010^{100} operations?

You will be given TT test cases to solve.

It can be proved that the answer is less than 2632^{63} under the Constraints.

Constraints

  • 1leqTleq201 \\leq T \\leq 20
  • 1leqXleq9times10181 \\leq X \\leq 9\\times 10^{18}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

TT rmcase1\\rm case_1 vdots\\vdots rmcaseT\\rm case_T

Each case is in the following format:

XX

Output

Print TT lines. The ii-th line should contain the answer for rmcasei\\rm case_i.


Sample Input 1

4
16
1
123456789012
1000000000000000000

Sample Output 1

5
1
4555793983
23561347048791096

In the first case, the following five sequences can result from the operations.

  • (16,4,2,1,1,1,ldots)(16,4,2,1,1,1,\\ldots)
  • (16,4,1,1,1,1,ldots)(16,4,1,1,1,1,\\ldots)
  • (16,3,1,1,1,1,ldots)(16,3,1,1,1,1,\\ldots)
  • (16,2,1,1,1,1,ldots)(16,2,1,1,1,1,\\ldots)
  • (16,1,1,1,1,1,ldots)(16,1,1,1,1,1,\\ldots)