#abc239b. [abc239_b]Integer Division

[abc239_b]Integer Division

Problem Statement

Given an integer XX between \-1018\-10^{18} and 101810^{18} (inclusive), print leftlfloordfracX10rightrfloor\\left\\lfloor \\dfrac{X}{10} \\right\\rfloor.

Notes

For a real number xx, leftlfloorxrightrfloor\\left\\lfloor x \\right\\rfloor denotes "the maximum integer not exceeding xx". For example, we have $\\left\\lfloor 4.7 \\right\\rfloor = 4, \\left\\lfloor -2.4 \\right\\rfloor = -3$, and leftlfloor5rightrfloor=5\\left\\lfloor 5 \\right\\rfloor = 5. (For more details, please refer to the description in the Sample Input and Output.)

Constraints

  • \-1018leqXleq1018\-10^{18} \\leq X \\leq 10^{18}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

XX

Output

Print leftlfloorfracX10rightrfloor\\left\\lfloor \\frac{X}{10} \\right\\rfloor. Note that it should be output as an integer.


Sample Input 1

47

Sample Output 1

4

The integers that do not exceed frac4710=4.7\\frac{47}{10} = 4.7 are all the negative integers, 0,1,2,30, 1, 2, 3, and 44. The maximum integer among them is 44, so we have leftlfloorfrac4710rightrfloor=4\\left\\lfloor \\frac{47}{10} \\right\\rfloor = 4.


Sample Input 2

-24

Sample Output 2

-3

Since the maximum integer not exceeding frac2410=2.4\\frac{-24}{10} = -2.4 is \-3\-3, we have $\\left\\lfloor \\frac{-24}{10} \\right\\rfloor = -3$.
Note that \-2\-2 does not satisfy the condition, as \-2\-2 exceeds \-2.4\-2.4.


Sample Input 3

50

Sample Output 3

5

The maximum integer that does not exceed frac5010=5\\frac{50}{10} = 5 is 55 itself. Thus, we have leftlfloorfrac5010rightrfloor=5\\left\\lfloor \\frac{50}{10} \\right\\rfloor = 5.


Sample Input 4

-30

Sample Output 4

-3

Just like the previous example, $\\left\\lfloor \\frac{-30}{10} \\right\\rfloor = -3$.


Sample Input 5

987654321987654321

Sample Output 5

98765432198765432

The answer is 9876543219876543298765432198765432. Make sure that all the digits match.

If your program does not behave as intended, we recommend you checking the specification of the programming language you use.
If you want to check how your code works, you may use "Custom Test" above the Problem Statement.