#abc215b. [abc215_b]log2(N)

[abc215_b]log2(N)

Problem Statement

Given a positive integer NN, find the maximum integer kk such that 2kleN2^k \\le N.

Constraints

  • NN is an integer satisfying 1leNle10181 \\le N \\le 10^{18}.

Input

Input is given from Standard Input in the following format:

NN

Output

Print the answer as an integer.


Sample Input 1

6

Sample Output 1

2
  • k=2k=2 satisfies 22=4le62^2=4 \\le 6.
  • For every integer kk such that kge3k \\ge 3, 2k>62^k > 6 holds.

Therefore, the answer is k=2k=2.


Sample Input 2

1

Sample Output 2

0

Note that 20=12^0=1.


Sample Input 3

1000000000000000000

Sample Output 3

59

The input value may not fit into a 3232-bit integer.