#abc202c. [abc202_c]Made Up

[abc202_c]Made Up

Problem Statement

Given are three sequences of length NN each: A=(A1,A2,dots,AN)A = (A_1, A_2, \\dots, A_N), B=(B1,B2,dots,BN)B = (B_1, B_2, \\dots, B_N), and C=(C1,C2,dots,CN)C = (C_1, C_2, \\dots, C_N), consisting of integers between 11 and NN (inclusive).

How many pairs (i,j)(i, j) of integers between 11 and NN (inclusive) satisfy Ai=BCjA_i = B_{C_j}?

Constraints

  • 1leqNleq1051 \\leq N \\leq 10^5
  • 1leqAi,Bi,CileqN1 \\leq A_i, B_i, C_i \\leq N
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN A1A_1 A2A_2 ldots\\ldots ANA_N B1B_1 B2B_2 ldots\\ldots BNB_N C1C_1 C2C_2 ldots\\ldots CNC_N

Output

Print the number of pairs (i,j)(i, j) such that Ai=BCjA_i = B_{C_j}.


Sample Input 1

3
1 2 2
3 1 2
2 3 2

Sample Output 1

4

Four pairs satisfy the condition: (1,1),(1,3),(2,2),(3,2)(1, 1), (1, 3), (2, 2), (3, 2).


Sample Input 2

4
1 1 1 1
1 1 1 1
1 2 3 4

Sample Output 2

16

All the pairs satisfy the condition.


Sample Input 3

3
2 3 3
1 3 3
1 1 1

Sample Output 3

0

No pair satisfies the condition.