#abc147d. [abc147_d]Xor Sum 4

[abc147_d]Xor Sum 4

Problem Statement

We have NN integers. The ii-th integer is AiA_i.

Find $\\sum_{i=1}^{N-1}\\sum_{j=i+1}^{N} (A_i \\text{ XOR } A_j)$, modulo (109+7)(10^9+7).

What is textXOR\\text{ XOR }?

The XOR of integers AA and BB, AtextXORBA \\text{ XOR } B, is defined as follows:

  • When AtextXORBA \\text{ XOR } B is written in base two, the digit in the 2k2^k's place (kgeq0k \\geq 0) is 11 if either AA or BB, but not both, has 11 in the 2k2^k's place, and 00 otherwise.

For example, 3textXOR5=63 \\text{ XOR } 5 = 6. (In base two: 011textXOR101=110011 \\text{ XOR } 101 = 110.)

Constraints

  • 2leqNleq3times1052 \\leq N \\leq 3 \\times 10^5
  • 0leqAi<2600 \\leq A_i < 2^{60}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN A1A_1 A2A_2 ...... ANA_N

Output

Print the value $\\sum_{i=1}^{N-1}\\sum_{j=i+1}^{N} (A_i \\text{ XOR } A_j)$, modulo (109+7)(10^9+7).


Sample Input 1

3
1 2 3

Sample Output 1

6

We have $(1\\text{ XOR } 2)+(1\\text{ XOR } 3)+(2\\text{ XOR } 3)=3+2+1=6$.


Sample Input 2

10
3 1 4 1 5 9 2 6 5 3

Sample Output 2

237

Sample Input 3

10
3 14 159 2653 58979 323846 2643383 27950288 419716939 9375105820

Sample Output 3

103715602

Print the sum modulo (109+7)(10^9+7).